RNA processing and degradation in Bacillus subtilis.
نویسنده
چکیده
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in E. coli and B. subtilis, only 6 are shared, 3 exoribonucleases and 3 endoribonucleases. Some enzymes essential for cell viability in E. coli, such as RNase E and oligoribonuclease, do not have homologs in B. subtilis, and of those enzymes in common, some combinations are essential in one organism but not in the other. The degradation pathways and transcript half-lives have been examined to various degrees for a dozen or so B. subtilis mRNAs. The determinants of mRNA stability have been characterized for a number of these and point to a fundamentally different process in the initiation of mRNA decay. While RNase E binds to the 5' end and catalyzes the rate-limiting cleavage of the majority of E. coli RNAs by looping to internal sites, the equivalent nuclease in B. subtilis, although not yet identified, is predicted to scan or track from the 5' end. RNase E can also access cleavage sites directly, albeit less efficiently, while the enzyme responsible for initiating the decay of B. subtilis mRNAs appears incapable of direct entry. Thus, unlike E. coli, RNAs possessing stable secondary structures or sites for protein or ribosome binding near the 5' end can have very long half-lives even if the RNA is not protected by translation.
منابع مشابه
Localization of Components of the RNA-Degrading Machine in Bacillus subtilis
In bacteria, the control of mRNA stability is crucial to allow rapid adaptation to changing conditions. In most bacteria, RNA degradation is catalyzed by the RNA degradosome, a protein complex composed of endo- and exoribonucleases, RNA helicases, and accessory proteins. In the Gram-positive model organism Bacillus subtilis, the existence of a RNA degradosome assembled around the membrane-bound...
متن کاملMechanism of decay of the cry1Aa mRNA in Bacillus subtilis.
We undertook the study of the decay process of the cry1Aa mRNA of Bacillus thuringiensis expressed in B. subtilis. The cry1Aa transcript is a 3.7-kb mRNA expressed during sporulation whose transcriptional control has previously been studied in both B. subtilis and B. thuringiensis. We found that the cry1Aa mRNA has a half-life of around 9 min and that its decay occurs through endoribonucleolyti...
متن کاملRNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.
The control of mRNA stability is an important component of regulation in bacteria. Processing and degradation of mRNAs are initiated by an endonucleolytic attack, and the cleavage products are processively degraded by exoribonucleases. In many bacteria, these RNases, as well as RNA helicases and other proteins, are organized in a protein complex called the RNA degradosome. In Escherichia coli, ...
متن کاملSpecificity of RppH-dependent RNA degradation in Bacillus subtilis.
Bacterial RNA degradation often begins with conversion of the 5'-terminal triphosphate to a monophosphate, creating a better substrate for subsequent ribonuclease digestion. For example, in Bacillus subtilis and related organisms, removal of the gamma and beta phosphates of primary transcripts by the RNA pyrophosphohydrolase RppH triggers rapid 5'-exonucleolytic degradation by RNase J. However,...
متن کاملMaturation and degradation of RNA in bacteria.
RNA decay plays an important role, not only in recycling nucleotides but also in determining the rapidity with which cells can react to changing growth conditions. The degradation process can be regulated, thus providing an often-underestimated means of controlling gene expression. Recent developments in the field of RNA maturation and decay in two key model organisms, Escherichia coli and Baci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2003